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In aerobic organisms, the herag-Cug binuclear active center ~ Scheme 1
in heme-copper oxidases is responsible forkihding, O-O
reductive cleavage, and protonation to givgdtt The enzyme
couples this 4e/4H* O, reduction to the translocation of protons,
creating the membrane potential used to drive ATP synthesis.
There is considerable interest in developing structural, spectro-
scopic, and functional active site modét$, but only a few
discrete heterobinuclear 'Fe-CuU species have been well char-
acterized and employed for critical,@eactivity studies:>8

We wish to study systems where the (porphyrinat&)jFeu'/
O, chemistry (L= copper ligand) may be controlled (but also " r "
systematically varied), in situations where intramolecular reactions (L)Fe™-OH (1a, 1b) (L)Fe” (2a, 2b)
are favored. Here, we report such chemistry with heterobinucle-

F

.1 6
ating ligands, the constitutional isomets and 5L, where a ool satt alL= 5L ‘
tetradentate TMPRligating moiety is covalently attached to the Base b:L="L [Cu'(MeCN),4J*
periphery of a porphryin, through either the 6-positiéh) (or ArF = 2,6 difluorophenyl
the 5-position {L) of one pyridine arm (Scheme 15L and 5L
take advantage by employing a Cu ligand with an established
(TMPA)CU/O, chemistry with known kinetics, thermodynamics, G/\N 1+ G\l/\N T+

structures, and spectroscoffyin addition to the description of
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Table 1. *H NMR (300 MHz) Pyrrole Resonances of Reduced Complexes (295 K)

solvent SLFe(ll) (2a) SLFe(ll) (2b) [((L)FeCu]" (3q) [(’L)FeCu]" (3b)
THF-dg 52.9 (s), 54.2 (s), 55.0 (s), 56.3(s), 53.5 (s, br), 54.6 (s, br), 54.9 (s), 55.6 (s),
57.8 (s), 58.6 (s) 57.5(s), 58.3 (s) 55.7 (s, br), 56.8 (s, br) 56.8 (s, br), 57.9 (s, br)
non-coordinating 43.0 (s), 44.6 (s), 38.7 (s, br) dia dianf
46.3 (s), 47.1 (s)
pyridine-ds 8.7 (sy dianf 8.7 (sy dianf

a2 Noncoordinating: CBCl, (2a, 2b), tolueneeds (3a, 3b). ® 2H NMR. ¢ All signals in the diamagnetic regioALow concentrations.

u-oxo-heme/non-heme diiron(Ill) complexes [(L)FeO—F€"-
(CD]T;* treatment with base (to “rust” out the iron bound to
TMPA) or chlorotrimethylsilane and subsequent purification via
column chromatography gives (L)fe-OH, 1a, and1b {1112
m/z (M + H)*}. Sodium dithionite reduction dfa or 1b under
an inert atmosphere yields the (L)F&mpty-tether” complexes
2aand2b, both with characteristic U¥visible (424 (Soret), 544
nm) and'H NMR (see Table 1) featurésAddition of a copper(l)
source, usually [Cu(C¥CN),J(BArF), gives the desired He-
Cu complexes3a and3b with similar UV—vis spectra (424 nm,
544 nm)ie

For [(L)Fe'CU](BArF) complexes8aand3b, high-spin ferrous
IH NMR split pyrrole signatures (4555 ppm) are generated in
weakly to moderately coordinating solvents ((§fC(O), THF-
dg).1” Owing to the lack of up- or downfield-shifted peaks, we
attribute the high-spin state of the iron(ll) center to fifth-ligand
solvent coordination; the pyridine arms of the TMPA moiety are
unavailable for iron(ll) ligation due to coordination by copper(l).
An intermediateS= 1 spin state is generated in a noncoordinating
solvent such as toluene: (i) tH&l NMR spectrum is further
upfield shifted (Table 1) compared to that of a high-spin ferrous
center, and (i) the UVvis spectrum of [(L)FECU](BArF) in
toluene is distinctive (424 (Soret), 528, 558 (sh) nm) and identical
to that of the parent compound gFPP)Fé, with known planar
S=1 four-coordinatiorf¢ Again, pyridineels solvent gives an iron-
(I1) species with low-spin configuration.

Exposure of3aor 3b to dioxygen at room temperature results
in clean reaction to give oxidized products, thexo complexes
[(L)Fe""—O—Cu'](BArF), 4aor 4b, Scheme 18 Oxygenation in
acetonitrile with'®0, results in the incorporation of tH€O label
into 4aor 4b, as confirmed by MALDI-TOF-MS. These reactions
point to a crudely biomimetic process, in that the dioxygen@D
bond is reductively cleaved and an oxo atom at the oxidation
state level of water is incorporated into the final prodict.

Crystals of4a suitable for X-ray diffraction were isolated;
its overall structure (Figure 1) is very similar to that of the
untethered parent compound, {{FPP)Fé' —O—Cu'(TMPA)] ",

5, with a near-linear FeO—Cu moiety, similar very short Cu

O, Fe-0, and Fe--Cu distances, and a typical high-spin structure
with Fe out of the porphyrin plane (0.46 A The distortion
giving OFe—-O—Cu = 171.7°, vs 178.2 for 5, could represent
an imposedL ligand constraint. In support of this, and illustrating
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Figure 1. Perspective view (30% ellipsoids) of the structure4at
Selected bond lengths (A) and angles (deg): -F@1 1.750(4), FexN
(N1—N4) 2.092(5)-2.114(4), Fe-N4(plane)0.46, Cu-0O1 1.848(4), Cut
N24 2.074(5), CutN21 2.316(6), Cu:N22 2.015(5), CutN23 1.948-
(7); Fe...Cu 3.586; FeO—Cu 171.1(3), N24 Cul-01 175.7(2), N22
Cul—N23 143.8(3).

the influence of ligand architecture, an EXAFS spectroscopy
structural study of fL)Fe" —O—Cu'|(BArF) (4b) reveals that the
different ligand architecture 8L causes a severe bendingre—

O—Cu = 140°.#2 Such distortions (going frond to 4a to 4b)

lead to increased basicity (i.e., oxo protonation) or diminished
stability of the F&/—O—Cu' core?*2 These changes in structure
and reactivity are of significance given thabxo andu-hydroxo

cores have been suggested as possible models for resting-state
heme-copper oxidases, or as turnover intermediates in the catalytic
cycle!®

In summary, discrete fully reduced'FeCu complexes can
be prepared using heterobinucleating tethered tetraarylporphryinate
ligandsfL and®L, where NMR spectroscopic inquiry reveals that
their structure and iron(ll) spin states are diverse and can be
manipulated. In botfL and5L, a biomimetic reaction results in
the formation of stablgi-oxo Fd'—O—Cu' complexes. Future
directions for study include low-temperature manipulation and
inquiry, in order to try to stabilize and characterizgi@ermedi-
ates, as well as mechanistic investigations of these observed
reductive O-O splitting reactions.
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